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Abstract. Eigenvalues of the ground state of the radial SchrBdinger equation for a spiked 
harmonic-oscillator potential have been evaluated employing two methods: numerically, 
via the Lanczoslgrid technique. and by means of standard Pad& appraximants constructed 
from an expansion of large coupling parameter series for the energy. Numerical results 
are compared for several values of the parameters characterizing the spiked singular 
potential. 

1. Introduction 

The solution of the one-particle Schrodinger equation employing singular perturbation 
potentials has been a subject of continuous interest during the past two decades, 
Analytical as well as numerical solutions have been attempted. Among the former, the 
seminal work by Case (1950), and the stimulating articles by Spector (1965, 1967), 
Klauder (1973, 1975, 1978), Detwiler and Klauder (1975), Ezawa e l  a/ (1975), Harrel 
(1977), Znojil (1982, 1984, 1989, 1990, 1991a.b) and Flynn el al (1991) are worth 
mentioning. Many innovative and simple methods for numerically integrating the 
Schrodinger equation have been developed. Of special relevance to this article are 
the works by Killingbeck (1977, 1979, 1980a,b, 1982, 1985, 1988), Hajj (1980), 
Korsch and Laurent (1981), Giraldo el al (1985, 19861, Garcia and Caro (1987) and 
Groenenboom and Buck (1990). Further references on the numerical and analytical 
solution of the non-relativistic Schrodinger equation can be found in the works cited 
above. Quite recently, Aguilera-Navarro e l  a/ (1990) have outlined simple seminumeri- 
cal techniques to find the ground state energy of a spiked harmonic-oscillator Hamil- 
tonian. The principal thrust of the latter article was a large coupling perturbative 
expansion analysis for the energy. Such treatment presents great challenges since an 
extremely high order of accuracy in  the calculations must be observed if meaningful 

pointed out that Detwiler and Klauder (1975) reported results for the eigenenergies 
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ofthe spiked harmonic-oscillator Hamiltonian that were vitiated because of the program 
employed by these workers to compute the eigenvalues in question. The twofold 
purpose of this short article is: 

(i) to present independent checks to the results reported by Killingbeck (1982) 
and thus resolve conclusively the issue of the discrepancy between the eigenenergy 
values given by this author and those of Detwiler and Klauder (1975); and 

(ii) to propose an accurate, analytical approximation for the ground state energy 
of the spiked harmonic oscillator, applicable to arbitrary values of the strength 
parameter. 

2. Background 

As has been pointed out by Harrel (1977), de Llano (1981), Znojil (1982, 1984, 1989, 
1990) and others, there are a number of cases where the use of singular potentials is 
of interest physically and mathematically. The particular type of singular perturbation 
potential to be treated in this paper is Ar-", where r is the radial coordinate. Throughout 
this article the adjective 'spiked' will be employed to denote an term in the potential. 
A true spike (a Dirac delta) has been employed by Killingheck (1988) to find $2(x) 
as an expectation vaiue. As is well known, the Ar? term characterizes a repulsive core 
interaction in quantum mechanics and its effect becomes negligibly small away from 
r=O. The quantity A (>O) measures the strength of the perturbative potential term. 
The higher the value of the positive parameter a, the stronger the singularity of the 
perturbation potential at the origin. The s-state radial equation of a spiked harmonic 
oscillator reads 

- D Z ~ i r 2 V +  APT = E T  (1) 

with the Dirichlet boundary condition "(0) = 0, where T( r) denotes a real-valued 
solution of the time-independent Schrodinger equation. The interval of interest for the 
radial distance is (0, m). 

3. Methods of calculation 

A method to calculate the ground state energy of the spiked harmonic oscillator has 
been described in an interesting and important paper by Detwiler and Klauder (1975). 
In an attempt to check the relative merits of the sets of results derived by Detwiler 
and Klauder (1975) and those found by Killingbeck (1982), we have numerically solved 
the Schrodinger equation for the spiked harmonic oscillator for several values of a 
and A. For this task we have employed the Lanczos/grid method developed and 
successfully tested by Groenenboom and Buck (1990). Essentially the method consists 
in discretizing the Hamiltonian -D2+r2+Ar-* on a grid. In the present work 
rmin . .  . rmar = 0.0.. .6.0. Six different values for the number N of grid points were 
cmpioyeu, namciy IUU, LUU, 4uu, ouu, IOUU anu ~ L U U .  1 nc n vaiucb arc oi i v .  fi LCIILII-WY=I 

finite difference formula was employed for the kinetic energy. The Lanczos iteration 
(Lanczos 1950, Cullum and Willoughby 1981) was started with the function r* exp(-r2). 
Table 1 shows the ground state energy eigenvalues E; corresponding to the six different 
N values in the finite difference representation of the Hamiltonian (1). For the sake 

.-.- , . ~ ~ . >  ~ ..-.. 1 ~ ~ . 1 1 1 \  _Inn ,An "an *, nn...>--.fin m.., I L i X T  A .--. L --A"-  
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Table 1. The energies for six different N values in the finite difference representation of 
the Hamiltonian given by equation (1). The error estimate error, for E, is simply E, - E,,, . 
Error, is the bisection routine error estimate. The underlined values are the most accurate 
ones. 

0 = 4  a = 6  

A N Energy Error! Error, Energy Error! Error, 

0.01 100 
200 
400 
800 

1600 
3200 

0.005 100 
200 
400 
800 

1600 
3200 

0.0025 100 

400 
800 

1600 
3200 

,on '."" 

3.205 248 45 
3.205 035 67 
3.205 067 73 
3.205 067 48 
3.205 067 49 
3.205 067 49 
3.144 94696 
3.148 597 05 
3.148 333 77 
3.148 352 23 
3,14835231 
3.14835231 
3.097 740 34 
3.106 894 92 
3.10679392 
3.106 809 05 

-2.lE-04 
3.2E-05 

-2.5E-07 
1.6E-08 

-8.lE-09 

3.7E-03 
-2.6E -04 

1.8E - 05 
7.4E-08 

-1.2E-09 

9.2E - 03 
-!.OE-04 

1.5E - OS 
-1.2E-07 

2.OE-12 
1.6E-I1 
2.1E-10 
3 . 2 - 0 9  
5.OE-08 
8.1 E-07 
1 3 - 1 2  
1.OE-I1 
1 2 - 1 0  
1.6E - 09 
2.5E - 08 
4.OE - 07 
1 9 - 1 2  
8.0E-I2 
6.6E-ll 
8.6E-10 

3.505 321 54 
3.505 452 15 
3.505 452 39 
3.505 454 14 

3.422 915 17 
3.422 881 89 
3.422 884 16 
3.422 887 27 

3.354 181 54 

3.35391930 
3.35391977 

I , < , O , S M  ".,,, ,.~"" 

1 3 - 0 4  
2.4E-07 
I .%-06 

- 3 . 3 ~  -os 
2.3E - 06 
3.1 E - 06 

- 2.6E - 04 
4.4E - O? 
4.7E-07 

2.OE - 10 
1.3E-08 
8.4E-07 
5.3E - OS 

1.OE-IO 
6 . 5 - 0 9  
4.2E - 07 
2.7E-05 

5.2E-ll 
?.?E-% 
2.1E-07 
l.3E - OS 

3.106808 93 1.3E-08 1.3E-08 
3.106808 95 2.OE - 07 

of completeness, a simple error, estimate error, = Et - for the energies E, has also 
been included in the table. From table 1 it is inferred that only a limited accuracy of 
the results can be obtained, particularly for the case for which a = 6. This is to be 
expected because, as has been remarked earlier, when the parameter a is relatively 
large the spikelike term in the potential energy function becomes more singular at the 
origin. %.he program em.p!rryed in the present work to determine the eigenvalues of the 
spiked harmonic oscillator makes use of the bisection algorithm (Wilkinson and Reinsch 
1971). This routine gives an error bound estimate, errorl in  table 1, which is related 
to the norm of the matrix. Figure 1 shows plots of this bisection-error estimate, together 
with the error estimate E, - E,,, as a function of the grid constant h on a double- 
logarithmic scale. Figures similar to this can be easily constructed for the four cases 
A = 0.005, a = 4 and a = 6, and A = 0.01, a = 4 and a = 6. The bisection-error (broken 
line) increases for small h values and is clearly related to the spike in the potential 
energy function. A careful analysis of table 1 reveals that in some cases the Ei - E,,, 
error estimate is below the bisection error. This is possible because the bisection 
iteration was continued after the estimated error bound was reached, which can give 
higher accuracy in some special cases (Wilkinson and Reinsch 1971). 

Aguilera-Navarro et a1 (1990) have developed a series expansion for the ground 
State energy of a spiked harmonic oscillator, valid for large values of A, ( 2 s  A<m) 
and arbitrary values of a. Their expression reads 
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'3 -2 

-4 . 

-2.8 -2.4 -2.0 -1  6 -1.2 

lOQ(h) 

Figure 1. The error in the ground state eigenenergy of the spiked harmonic oscillator 
(equation ( l ) ,  A=0.0025 and U =4(+) and OL = 6 ( " ) ) ,  as a function of the grid constant 
( h )  using the tenth-order approximation for the Laplacian (full lines). The bisection error 
(broken lines) increases for small grid constants. 

where z = (2/aA)2/("t2', and 

f t =  1 + 2 / a  ''= 7 2 ( 1 + 2 / a )  " 1728( a +2)'/'( 1 + 2 / a )  ' 

(a +2)'/2 (a+ 1 ) ( 8 - a )  (a + l ) ( a  - 2) (a2-  a -74) 

The standard Pad6 approximant technique (Baker and Graves-Morris 1981, 
Cabannes 1975, Hioe 1977, Killingbeck 1985) has proved successful in reproducing 
the correct behaviour of functions for which only the beginning of an expansion series 
is available; the method has also been applied with success to cases where many (over 
20) series coefficients are known, as in the critical phenomena associated with lattice- 
spin models (Gaunt and Guttmann 1974), or in several quantum problems (Cizek and 
Vrscay 1982). It appears that little work has been done to extract useful information 
from series bearing only a handful (4 to 5) of coefficients (Aguilera-Navarro and 
EstCvez 1988, Aguilera-Navarro et a/ 1988, 1991). 

In this paper, the simple, expeditious and inexpensive Pad6 approximants method 
is employed to extrapolate the four-term large coupling constant expansion for the 
energy given by (2), to a region far beyond that of its validity. The new expression 
thus found is only meant for the evaluation of the ground state energy of the spiked .~ narmonic ~ 

be concerned with the analytic manipulation of the function developed. 
In the present work we employ the notation ( M I N ) ,  to denote an M t h  degree 

polynomial divided by an Nth  degree polynomial. The only non-trivial, third-order 
Pad6 forms that can be constructed for the four-term quantity between parentheses in 
the energy expression (2) are (1/2), (2/1) and (0/3). From this triad of approximants 
one must be selected such that ideally it represents well the original large-coupling- 
constant expansion for the energy and is also reliable for 0 < A =s 2. The results for the 
energy of the spiked harmonic oscillator obtained by using forms (0/3) and (1/2) were 
compared with the corresponding ones from the numerical integration of the radial 
equation employing the Lanczos/grid method. The numerical analysis performed 

osc.i~aior for ar.Diirary values Ufi'le coupiirig parai-ileiei A, Thus we w i l l  noi 
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showed that the approximant (1/2) yielded positive values for the energy, as it ought, 
but that these values were always considerably lower than the exact ones. The Pad6 
form (0/3) rendered negative (unphysical) values of the energy for A 6 0.02 regardless 
of the value of a. These are sufficient reasons to discard forms (0/3) and (1/2). The 
remaining form, (2/l) ,  does not possess singularities in the range OSA<m.  More 
importantly the approximation 

E =  1 + -  -(2/1)(2) ( 3: (3) 

has been found to be highly accurate. For instance, for a = 4 and A =0.0025 the relative 
error is 9.8 x 10-2%. When a = 6 and A = 0.0025 the error increases to 3.2 x lo-'%. 

Employing a judicious blend of the theory of perturbations of linear operators, 
and approximation techniques for differential equations, Harrel (1977) has been able 
io derive expiicit expressions For ihe iowesi-order correciions io ihe eigenvaiues of the 
spiked harmonic-oscillator Hamiltonian. The modified perturbation theory results due 
to Harrel are asymptotically correct for small values of A. Harrel (1977) has proved 
tha! the gronnd state energy expressions f m  n = 4  m d  a = 6 ccmect to lowest order 
obey the algebraic forms 

Unfortunately, the derivation of higher-order perturbative corrections to the eigenvalues 
given by (4) and (5) are likely to be exceedingly laborious. The values of the gamma 
function in equation (5 )  are r(3/4) = 1.225 4167, and I'(1/4) = 3.625 6099. 

Table 2 compares our results for the energy for the case a = 4 with those of Detwiler 
and Klauder (1975). Harrel (1977) and Killingbeck (1982). The superscript d in the 
energy E represents the Pad6 extrapolation result given by (3). The numerical integra- 
tion results of the Schrodinger equation employing the Lanczos/grid method are given 
irr the last column. The latter results are in virtual perfect agreement with those found 
by Killingbeck (1982), employing the Richardson extrapolation technique [Richardson 
and Gaunt 1927, Joyce 1973); this lends further support to the conjecture of Killingbeck 
(1982) that there was some slight error in the computer program employed by Detwiler 
and Klauder (1975). Table 3 is the same as table 2 except that a = 6 .  

Table 2. Some sample ground state energy eigenvalues for the spiked harmonic-oscillator 
"IIIIIIL"III.3LII. , U 1  r,,sr&,r3 1 I C  YL"!,""JLY 111 .3"""1*1J "1111>. U -_I .  
...- :*...:-- & I ,  ---- 2"" " .~  A:"..,-..-> :.. "-.:.."-.. .. -i.. " - "  

A E" E(foormula)" E' E' E !  Lancios p 

0.01 3.205 27 3.075 22 3.205 07 3.204 42 1.205 067 
0.005 1.148 39 3.053 19 3.14835 3.146 64 3.148 352 
0.0025 3.10670 3.037 61 3.10681 3.103 77 3.106809 

"From Detwiler and Klauder (1975). 
From Harrell (1977). 
From Killingbeck (1982). Richardson extrapolation. 

*From the present work. Pad6 approrimant technique. 
From the pressnt work. Lanczorlgrid method. 
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Table 3. Same as table 2 except that 01 = 6. 

A Ed E(formula)h E' E" E(Lanczos)' 

0.01 3.505 74 3.096 48 3.505 45 3.496 88 3.505 452 
0.005 3.423 02 3.081 13 3.422 88 3.413 16 3.422 884 
0.0025 3.353 95 3.068 22 3.353 92 3.343 05 3.353 919 

For emlanation of notes see table 2 

4. Results 

Eigenenergies of the ground state of the spiked harmonic-oscillator Hamiltonian have 
been calculated for LY = 4 and a = 6 and small values of the coupling parameter, i.e. 
A 5 0.01. The results for the eigenvalues obtained by integration of the Schrodinger 
equation using the Lanczos/grid method (1950) were compared to those obtained by 
Killingbeck (1982) employing the Richardson extrapolation (of finite difference results). 
The finite difference method for eigenvalues advocated by Killingbeck (1982, 1991) 
gives results which are very accurate, showing that this last simple and efficient 
procedure can be utilized with profit even for attractive real potentials with radial form 
more singular than the inverse square at the origin. 

A small-coupling-constant series expansion in the parameter A "  ( U = +  for a =4; 
v = a  for a = 6) for the ground state energy of the spiked harmonic oscillator exists in 
the literature (Harrel 1977). In addition, there also exists a large-coupling-constant 
perturbative expansion (Aguilera-Navarro et al 1990). Since it would be of interest to 
derive an analytical expression applicable for intermediate values of the coupling 
parameter, we have constructed, with minimal labour, an approximant to represent 
the energy in this region; surprisingly, the single Pad6 extrapolant constructed, based 
on a large coupling series, was found to be far superior to the truncated series expansion. 
In fact, equation (3) for the ground state energy eigenvalues of the spiked harmonic- 
oscillator Hamiltonian never deviates from the exact results by more than one-half of 
1% on OSA<m. 
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